ISSN 1981-3708 Pesquisa

ANÁLISE COMPARATIVA DA RADIOPACIDADE DE TRÊS CIMENTOS ENDODÔNTICOS POR MEIO DE RADIOGRAFIA DIGITAL

COMPARATIVE ANALYSIS OF RADIOPACITY AMONG THREE ENDODONTIC SEALERS BY DIGITAL RADIOGRAPHY

Walkiria Karla de Aguiar Alencastro VEIGA¹; Kely Firmino BRUNO²; Adriana Lustosa PEREIRA³; Inara Carneiro Costa REGE⁴; Fabrício Luscino Alves de CASTRO⁵

- 1 Especialista em Endodontia pela Universidade Paulista UNIP, Goiânia, Goiás, Brasil;
- 2 Doutora em Ciências da Saúde pela Universidade Federal de Goiás, Professora Titular de Endodontia da Universidade Paulista UNIP, Goiânia, Goiás, Brasil;
- 3 Doutora em Odontologia pela Universidade de São Paulo, Professora Titular de Endodontia da Universidade Paulista UNIP, Goiânia, Goiás, Brasil;
- 4 Doutora em Ciências da Saúde pela Universidade Federal de Goiás, Professora Titular de Radiologia Odontológica da Universidade Paulista UNIP, Goiânia, Goiás, Brasil;
- 5 Doutor em Dentística Restauradora pela Universidade Estadual Paulista Júlio de Mesquita Filho.

RESUMO

A radiopacidade consiste em uma propriedade importante requerida para um material obturador, pela qual se avalia o preenchimento do sistema de canais radiculares. Objetivo: Realizar análise comparativa da radiopacidade de três cimentos endodônticos por meio de radiografia digital. Material e método: Foram confeccionadas oito placas de acrílico com quatro cavidades cada, nas quais inseriu-se os seguintes materiais: I- cimento endodôntico à base de hidróxido de cálcio (Sealapex); II- cimento endodôntico resinoso (AH PLUS); III- cimento endodôntico à base de MTA (MTA Fillapex); IV- cones de guta-percha (controle positivo). Estas

placas foram radiografadas digitalmente pelo método direto e as imagens obtidas foram analisadas pelos seus níveis de tons de cinza, utilizando-se o *software Image Tool for Windows* versão 3.0. Resultados: Verificou-se que o Sealapex apresentou radiopacidade menor que os demais cimentos testados e grupo controle (p<0,01); e o AH Plus e MTA Fillapex não foram diferentes entre si com relação à radiopacidade (p>0,05). Conclusão: Apenas o cimento Sealapex apresentou radiopacidade diferente dos demais materiais.

PALAVRAS-CHAVE: Cimentos Dentários; Obturação do Canal Radicular; Radiologia.

INTRODUÇÃO

De acordo com os princípios básicos que orientam a atual endodontia, todas as fases do tratamento devem ser encaradas com a mesma atenção e importância, por serem consideradas como atos operatórios interdependentes. Tem sido atribuída ênfase à fase da obturação dos canais radiculares, visto que tal etapa é fundamental e determinante para o sucesso do tratamento endodôntico convencional¹.

A satisfatória obturação dos canais radiculares deve promover o selamento hermético destes, restabelecendo, por meio da eliminação de vias de contaminação, a integridade dos tecidos perirradiculares. Desta maneira, o objetivo da obturação do sistema de canais radiculares deve recair sobre o preenchimento completo dos espaços que foram gerados pela sanificação².

Nos últimos anos, a endodontia vem passando por uma considerável evolução tanto no desenvolvimento, quanto na aplicação de novos materiais obturadores³. Atualmente, o cone de guta-percha é o material sólido mais utilizado e aceito universalmente nas obturações endodônticas. Todavia, por não apresentar adesividade, o mesmo deve ser usado em associação a um cimento endodôntico para possibilitar o selamento hermético do sistema de canais radiculares⁴.

Assim, o uso do cimento endodôntico durante a obturação do canal radicular é fundamental para o sucesso do tratamento, pois melhora a possibilidade de obtenção de um selamento impermeável, além de servir como material de preenchimento das irregularidades do canal e dos espaços entre as suas paredes e os cones. Ainda, os cimentos podem passar através dos canais laterais e acessórios e auxiliar no controle microbiano⁵. Estando o êxito da terapia endodôntica intimamente relacionado à etapa de obturação do canal radicular, a escolha do cimento endodôntico torna-se decisiva e primordial.

Encontram-se disponíveis no mercado diversos tipos de cimentos endodônticos, classificados em cimentos à base de oxido de zinco e eugenol, cimentos contendo hidróxido de cálcio, cimentos resinosos, cimentos à base de ionômero de vidro, cimentos à base de silicone e cimentos à base de agregado de trióxido mineral (MTA)⁶.

Dentre as propriedades físico-químicas desejáveis aos cimentos, a radiopacidade é de extrema relevância, uma vez que contribui para a visualização, ao exame radiográfico, do preenchimento do canal radicular pós-obturação⁶.

A radiopacidade ideal dos cimentos endodônticos é causa frequente de discussão. Cimentos que exibem pouca radiopacidade

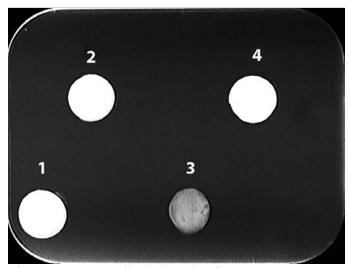
podem dificultar a visualização do selamento e até mesmo de extravasamentos. Por outro lado, a radiopacidade excessiva pode produzir artefatos, uma vez que interfere no contraste, na acuidade visual e na consequente percepção de detalhes⁷.

A radiopacidade deve ser suficiente para possibilitar a distinção entre o cimento obturador e as estruturas anatômicas adjacentes, viabilizando a análise da qualidade da obturação⁸. Em 2001, a *International Organization for Standardization*⁹ (ISO) 6876/2001 estabeleceu que os cimentos endodônticos devem ter radiopacidade superior ou equivalente à de 3mm de alumínio (mm Al).

A literatura demonstra ampla variabilidade na radiopacidade dos cimentos endodônticos existentes no mercado, sendo esta ocasionada pela composição química diversificada destes materiais¹⁰. Com o surgimento frequente de novos cimentos e de novas ferramentas de avaliação, faz-se necessário determinar quais apresentam esta propriedade física mais próxima do ideal¹¹.

Até meados da década de 80, grande parte dos trabalhos sobre a radiopacidade dos materiais obturadores empregavam o método do fotodensitômetro, de modo a verificar a radiopacidade em películas radiográficas. Entretanto, estudos mais recentes têm utilizado radiográficas digitais para o mesmo fim, uma vez este que método radiográfico exige menor tempo de exposição, além de eliminar a etapa de processamento químico, o qual é responsável pelas variações de qualidade das imagens, além de promover melhor visualização da densidade e do contraste radiográficos¹².

Neste sentido, o objetivo do presente estudo foi realizar uma análise comparativa da radiopacidade de três cimentos endodônticos por meio de radiografia digital. A hipótese nula testada foi a de que não há diferença na radiopacidade entre os cimentos investigados.


MATERIAL E MÉTODO

Para o presente estudo foram realizadas amostras para a avaliação da radiopacidade por meio de radiografia digital obtida pelo método direto. Foram confeccionadas oito placas de acrílico de 4,0 cm de largura por 3,0 cm de altura e com 4,0 mm de espessura. Em cada uma dessas placas foram confeccionadas quatro cavidades de 5,0 mm de diâmetro e 2,0 mm de profundidade, nas quais inseriu-se os seguintes corpos materiais: I- cimento endodôntico à base de hidróxido de cálcio (Sealapex®, SybronKerr, Washington, EUA); II- cimento endodôntico resinoso (AH PLUS®, Dentsply, DeTrey, Konstanz, Alemanha); III- cimento endodôntico à base de MTA (MTA Fillapex®, Angelus, Londrina, PR, Brasil); IV- cones de guta-percha (controle positivo). As informações referentes à composição química e fabricante de cada cimento estão descritas na Tabela 1.

Todos os cimentos testados foram espatulados de acordo com as especificações do fabricante e conservados em estufa à temperatura de 37° C e umidade de 100%, até sua presa total. Os cones de guta-percha foram plastificados pelo calor e consistiram no grupo controle positivo, por apresentarem alta radiopacidade.

Posteriormente, estas placas foram radiografadas em um aparelho radiográfico de 70 Kvp / 8 mA tipo Seletronic® (Dabi Atlante - Ribeirão Preto, SP, Brasil), por meio de sensores de placa de fósforo, em tempo de exposição de 0,32 segundos, à distância de 40 cm.

Após a realização das incidências radiográficas, as imagens foram armazenadas e salvas no formato TIF (Figura 1).

Figura 1 - Imagem radiográfica das placas de acrílico contendo os cimentos testados: 1 – Guta-Percha; 2 – AH Plus; 3 – Sealapex 4 - MTA Fillapex; 3 – Sealapex.

A avaliação da radiopacidade foi realizada pela análise dos níveis de cinza das imagens obtidas, utilizando o *software Image Tool for Windows®* versão 3.0 (Universidade do Texas, Texas, Estados Unidos), em uma área padronizada de 3.000 pixels². Este tipo de análise determina níveis de cinza de 0 a 256, com tons intermediários, em que os extremos 0 é a cor preta e 256 é a cor branca. Consequentemente, quanto maior o valor encontrado, maior a radiopacidade do material analisado.

A radiopacidade dos cimentos endodônticos Sealapex®, AH Plus® e MTA Fillapex® foram comparadas entre si e com a guta-percha pelos testes de Kruskal-Wallis e de Tukey para dados não paramétricos, sendo considerados significativos todos os testes que apresentaram valores de p menores que 0.05 ($\alpha = 5\%$).

Tabela 1 - Cimentos endodônticos com suas respectivas composições químicas e fabricantes.

Material	Composição química	Fabricante
Sealapex [®]	 Pasta base: óxido de cálcio, óxido de zinco, composto à base de sulfonamida e sílica. Pasta catalisadora: trióxido de bismuto, resina polimetilenometilsalicilato, dióxido de titânio, sílica, salicilato de isobutil e pigmentos. 	SybronEndo, Kerr, Estados Unidos
AH Plus®	- Pasta A: éter de bisfenol A, diglicidil, tungsteanato de cálcio, óxido de zircônio, aerosil e óxido de ferro. - Pasta B: amina adamantana, n-dibenzil-5-oxanonano-diamina, tungsteanato de cálcio, óxido de zircônio e óleo de silicone.	Dentsply, Konstanz, Alemanha
MTA Fillapex®	Resina salicilato, resina diluente, resina natural, óxido de bismuto, sílica nanoparticulada, trióxido agregado mineral (MTA) e pigmentos.	Angelus, Paraná, Brasil

RESULTADOS

A Tabela 2 apresenta o número de espécimes testados, as médias, os desvios padrão e os postos médios de radiopacidade para os cimentos endodônticos testados e guta- percha.

Todos os cimentos apresentaram radiopacidade semelhante à guta-percha, exceto o Sealapex que apresentou radiopacidade estatisticamente inferior à dos demais e da guta-percha (p<0,05). Estes resultados também podem ser vistos na Tabela 1.

Tabela 2 - Número de espécimes, médias, desvios padrão e postos médios de radiopacidade para os cimentos endodônticos e guta-percha. Os postos médios foram comparados entre si por meio do teste de Tukey para dados não paramétricos.

Espécimes	N	Média (±DP)	Postos Médios*
Sealapex [®]	8	159,50 (19,77)	166,50 ^A
AH Plus®	8	252,50 (2,39)	253,50 ^B
MTA Fillapex®	8	254,00 (0,00)	254,00 ^B
Guta-percha®	8	251,63 (3,46)	254,00 ^B

^{*}Letras sobrescritas diferentes indicam diferenças estatisticamente significantes com p<0,05

DISCUSSÃO

A radiopacidade pode ser considerada como uma propriedade física desejável aos materiais obturadores utilizados em endodontia, tendo em vista que permite a visualização radiográfica dos mesmos¹⁰. Tal propriedade possibilita a verificação da qualidade do preenchimento do canal radicular e a observação do limite apical de obturação¹³.

Materiais obturadores com radiopacidade ideal permitem a perfeita visualização radiográfica das dimensões da obturação, assim como de possíveis deficiências em sua condensação. Em contrapartida, materiais com radiopacidade excessiva podem levar à subestimação de falhas no preenchimento compacto do canal radicular¹⁴.

Estudos prévios estabeleciam a radiopacidade de cimentos endodônticos por meio de fotodensitometria, mensurada em filmes radiográficos e em comparação à escala de alumínio, conforme o recomendado pela especificação número 57 do *American National Standards Institute of The American Dental Association* (ANSI/ADA)¹⁵. Entretanto, com o advento das imagens digitais aliadas à maior rapidez e eficiência, este formato passou a ser substituído¹¹.

A quantificação dos valores de pixels médios obtidos a partir de radiografias digitais suporta sua comparação direta por meio de testes estatísticos¹⁴. Desta maneira, tornou-se obsoleta a necessidade de obrigatoriamente expressar a radiopacidade dos materiais usados na obturação dos canais radiculares em milímetros de alumínio.

Segundo o antigo padrão da *International Standards Organiza-tion* (ISO) 6876/2001, a radiopacidade dos cimentos endodônticos deveria ser equivalente a, no mínimo, 3 mm de alumínio 16. Com o desenvolvimento das imagens digitais, realizou-se uma equivalência dos níveis de cinza (pixels) com os graus em milímetros de alumínio para determinação da radiopacidade. Estabeleceu-se assim que 3mm de alumínio equivaleria a uma faixa de 70 a 90 pixels 17. Diante do exposto, todos os cimentos testados no presente estudo apresentaram radiopacidade superior a esta faixa, sendo, desta forma, apropriados de acordo com as especificações impostas pela norma ISO 6876/2001 9. Mais ainda, os valores obtidos no presente estudo foram bem superiores aos

estabelecidos como ideais pela norma ISO supracitada, o que, por outro lado, poderia ser prejudicial, já que poderia levar à subestimação de falhas no preenchimento compacto do canal radicular, principalmente no terço cervical¹⁴. De acordo com o conhecimento dos autores deste estudo, a literatura não estabelece valores máximos de radiopacidade em tons de cinza, portanto, novos estudos devem ser realizados para este fim.

A literatura científica dispõe de trabalhos que se utilizaram de imagens digitais obtidas por meio do método direto com vistas à comparação entre as radiopacidades de cimentos endodônticos. Há concordância entre os resultados, principalmente no que concerne à maior radiopacidade do cimento resinoso AHPlus® do que o cimento à base de hidróxido de cálcio Sealapex®12,18. Aznar *et al.*11 (2010) também verificaram maior radiopacidade do cimento AH Plus em relação ao Sealapex® ao analisarem imagens radiográficas digitais obtidas pelo método indireto.

No presente estudo, foi possível determinar que o AH Plus® apresentou uma radiopacidade superior ao Sealapex®, conforme os estudos supracitados. O MTA Fillapex® não apresentou diferença estatisticamente significante em relação ao AH Plus®, tendo em vista que os mesmos apresentaram médias de radiopacidade de 254,00 pixels e 252,50 pixels respectivamente. No entanto, assim como o AH Plus®, este cimento apresentou uma radiopacidade bem superior à do Sealapex®, o qual obteve uma radiopacidade de 159,50 pixels.

Os cimentos AH Plus® e MTA Fillapex® também apresentaram média de radiopacidade estatisticamente semelhante à guta-percha, o que os torna capazes de satisfazer às necessidades clínicas relacionadas à visualização da massa obturadora no interior do canal radicular¹9.

Esta radiopacidade dos cimentos endodônticos testados está alicerçada em suas composições. O Sealapex®é um cimento endodôntico à base de hidróxido de cálcio apresentado na forma de pasta-base e pasta-catalisadora²⁰.Possui o radiopacificadortrióxido de bismuto, em substituição ao sulfato de bário utilizado em sua formulação anterior, presente em sua composição em uma proporção de 20%14. Mesmo com este radiopacificador, sua radiopacidade foi bastante inferior à dos cimentos AH Plus® e MTA Fillapex[®]. Para Aznar *et al.*¹¹(2010), esta discrepância pode estar associada ao fato do Sealapex® possuir partículas grandes em sua composição, o que acarreta pouca interação entre seus componentes. O AH Plus® é um cimento resinoso constituído basicamente por resina epóxi e bisfenol²⁰. O óxido de zircônia, principal componente radiopacificador do AH Plus®, é considerado menos potente que o sulfato de bário previamente presente no Sealapex®14. Entretanto, na comparação entre os dois cimentos, o AH Plus[®] apresentou-se mais radiopaco que o Sealapex[®]. Tal fato pode estar associado à presença de outras substâncias radiopacas em sua composição, como o tungsteanato de cálcio e o óxido de ferro¹⁴, além da já citada heterogeneidade observada na composição do Sealapex^{®11}.

O MTA Fillapex® é um cimento à base de resina de salicilato que contém agregado trióxido mineral (MTA) em sua formulação. O único agente radiopacificador presente na fórmula do MTA é o óxido de bismuto. No presente estudo, o MTA Fillapex® apresentou radiopacidade semelhante estatisticamente à do AH Plus®. O mesmo não foi observado por Bicheri e Victorino²¹

(2013) em cujo trabalho o cimento MTA Fillapex[®] apresentou radiopacidade de 127 pixels, enquanto o AH Plus[®] de 169,7 pixels, sendo esta diferença estatisticamente significante.

A radiopacidade do MTA Fillapex® ainda não está fundamentalmente alicerçada na literatura. A escassez de estudos pode ser atribuída ao fato deste ter sido lançado em cronologia mais recente que os demais cimentos testados. Todavia, o presente estudo traz contribuição importante ao estabelecer a radiopacidade satisfatória deste cimento para as obturações endodônticas. Ainda, estudos adicionais se fazem oportunos para estabelecer comparações profícuas e robustecer as conclusões.

CONCLUSÕES

Com base nos resultados e metodologia empregada, é lícito concluir que os cimentos apresentaram radiopacidade semelhante entre si e em comparação com a guta-percha, exceto o Sealapex, que apresentou valores menores de radiopacidade.

AGRADECIMENTOS

Este estudo foi subsidiado pela Vice-Reitoria de Pós-Graduação e Pesquisa da Universidade Paulista – UNIP, processo n^0 . 7-02-980/2015.

REFERÊNCIAS

- 01. Leonardo MR, Leal JM. Obturação dos Canais Radiculares. In: Leonardo MR. Endodontia tratamentos de canais radiculares: princípios técnicos e biológicos. 4. ed. São Paulo: Ed. Artes Médicas; 2005. p. 997-1060.
- 02. Andinós LAC, Camões ICG, Freitas LF, Santiago CN, Gomes CC. Avaliação do escoamento e radiopacidade de dois cimentos endodônticos. Rev odontol Univ Cid Sao Paulo. 2011; 23(1): 15-22.
- 03. Vivan RR, Simonetti MV, Berton A, Greatti VR, Ximenes JP, Holgado, LA et al. Avaliação das atividades antimicrobiana e biológica do cimento Portland associado ao AH Plus em diferentes proporções. Salusvita. 2014; 33(3): 309-30.
- 04. Kaya BV, Keçeci AD, Orhan H, Belli S. Micropushoutbond strengths of gutta-percha versus thermoplastic synthetic polymer-based systems: an ex vivo study. Int Endod J. 2008; 41(3): 211-8.
- 05. Gutmann JL, Witherspoon DE. Obturação dos Sistemas de Canais Radiculares Limpos e Modelados. In: Cohen S, Burns RC. Caminhos da Polpa. Rio de Janeiro: Ed. Guanabara Koogan; 2000. p. 243-341.
- 06. Lopes HP, Siqueira Júnior JF. Materiais obturadores. In: Lopes HP, Siqueira Júnior JF. Endodontia biologia e técnica. 3. ed. Rio de Janeiro: Guanabara Koogan; 2010. p. 613-36.
- 07. Guimarães CS, Pontual AA, Melo Júnior PMR, Cruz MLR, Silveira MMF. Avaliação subjetiva de artefatos em tomografias

- computadorizadas de feixe cônicos produzidos pelo MTA Fillapex e AH Plus. Rev Fac Odontol. 2012; 53(2): 25-9.
- 08. Rosa RA, Bier CA, Pereira CC, So MVR, Wolle CFB. Simulation of soft and hard tissues and its effects on radiopacity of root canal sealers. Rev Odontol Cienc. 2011; 26(4): 326-30.
- 09. International Organization for Standardization. Dental root canal sealing materials. ISO 6876:2001.
- 10. Cañadas OS, Berástegui E, Gaton-Hernández P, Silva LAB, Leite GA, Silva RS. Physicochemical Properties and Interfacial Adaptation of root canal sealers. Braz Dent J. 2014; 25(5): 435-41.
- 11. Aznar FDC, Bueno CES, Nishiyama CK, Martin AS. Radiopacidade de sete cimentos endodônticos avaliação através de radiografia digital. Rev Gaúcha Odontol. 2010; 58(2): 181-9.
- 12. Sydney GB, Ferreira M, Leonardi DP, Deonizio MDA, Batista A. Análise da radiopacidade de cimentos endodônticos por meio de radiografia digital. Rev Odonto Ciênc. 2008; 23(4): 338-41.
- 13. Vivan RR, Neme MP, Joaquim RMCJ, Weckwerth PH, Marques L, Duarte L *et al.* Avaliação da radiopacidade de diferentes cimentos obturadores endodônticos, acrescidos de hidróxido de cálcio. Salusvita. 2013; 32(1): 25-36.
- Bodanezi A, Munhoz EA, Bernardineli N, Capelozza ALA, Moraes IG, Bramante CM. Radiographic analysis of root canal fillings: influence of two sealers on the perception of voids. Braz Dent J. 2010; 21(2): 142-7.
- 15. American Dental Association. Specification # 57 for endodontic filling materials. J Am Dent Assoc. 1984; 108(84): 88.
- 16. Constante IGT, Bardauil MRRS, Carvalho CF, Davidowicz H, Moura AAM. Avaliação da radiopacidade dos cimentos endodônticos pelo Sistema RVG-Radiovisiografia. Rev Inst Ciênc Saúde. 2007; 25(1): 39-45.
- 17. Tagger M, Katz A. Radiopacity of endodontic sealers: Development of a new method for direct measurement. J Endont. 2003; 29(11): 751-5
- 18. Vale IS, Silva CCD. Avaliação da radiopacidade de alguns cimentos endodônticos por meio do sistema de imagem digital digora. J Bras Endod. 2005; 5(20): 354-9.
- Lisboa FML, Kopper PMP, Figueiredo JAP, Tartarotti E. Estudo da radiopacidade de três cimentos endodônticos por meio da imagem digitalizada. J Bras Endod. 2003; 4(14): 193-7.
- 20. Marín-Bauza GA, Silva-Sousa YTC, Cuha AS, Rached Júnior FJA, Boneti-Filho I, Sousa-Neto MD, Miranda CES. Physicochemical properties of endodontic sealers of different bases. J Appl Oral Sci. 2012; 20(4): 455-61.
- 21. Bicheri SAV, Victorino FR. Comparative evaluation of radiopacity of MTA Fillapex® endodontic sealer through a digital radiograph system. RSBO. 2013; 10(2): 49-52.

ABSTRACT

The radiopacity is an important property required for a root canal filling material, since it allows proper radiographic evaluation of the treated root canal system. Objective: To carry out a comparative analysis of the radiopacity of three endodontic sealers through digital radiography. Material and methods: Eight acrylic molds were filled with the following materials: (I) calcium hydroxide t-based cement (Sealapex); II-resin-based cement (AH PLUS); III-MTA-based cement (MTA Fillapex); IV-gutta-percha cones (positive control). The molds filled with the

materials were digitally radiographed using the direct method and the images obtained were analyzed using a grayscale from 0 to 255 dot points inch. Results: The Sealapex cement showed the lower values of radipacity than other cements and control (p<0.01). The AH Plus and MTA Fillapex cements were not different between each other (p>0.05). Conclusion: the cements tested showed radiopacity satisfactory, being lower to the Sealapex.

KEYWORDS: Dental Cements; Root Canal Filling; Radiology.

AUTOR PARA CORRESPONDÊNCIA

Kely Firmino Bruno Instituto de Ciências da Saúde, Odontologia, UNIP – Universidade Paulista, Campus Flamboyant, Rod. BR 153, Km 503, Áreas de 1 a 5, Fazenda Botafogo, 74845-090 Goiânia - GO, Brasil

E-mail: drkelybruno@gmail.com